GREEN SCIENCE POLICY INSTITUTE

When Do We Need PFAS? The Chemical Class Approach Towards a Healthier Environment

Arlene Blum PhD

Research Associate in Chemistry, UC Berkeley Executive Director, Green Science Policy Institute

March 2018

GREEN SCIENCE POLICY INSTITUTE

Reader

-nvironmenti

Science & Technology

FORMATION PAPER

FIⁱ

Reflectiv

G Supp Margaret ABST 1Silent Sp

Fluorin Laurel A.

Green S

Depart

Che

SBRI M

in huilding insulation:

in U.S. Fast Food Packaging Mark J. Strynar, Mark J. Strynar,

Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants

Xindi C. Hu,^{*1,7;} David Q. Andrews,[§] Andrew B. Lindstrom,^{||} Thomas A. Bruton,[⊥] Laurel A. Schaider,[†] Philippe Grandjean,[†] Rainer Lohmann,[@] Courtney C. Carignan,[†] Arlene Blum,^{⊥, ↓} Simona A. Balan,[●] Christopher P. Higgins,^O and Elsie M. Sunderland

[†]Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02215, United States @Di ⁴Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States

[§]Environmental Working Group, Washington, D.C. 20009, United States National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711 United States

University of California at Berkeley, Berkeley, California 94720, United States

"Silent Spring Institute, Newton, Massachusetts 02460, United States [®]University of Rhode Island, Narragansett, Rhode Island 02882, United States

VGreen Science Policy Institute, Berkeley, California 94705, United States

California Department of Toxic Substances Control, 1001 I Street, Sacramento, California 95814, United States (Formerly at th Green Science Policy Institute, Berkeley, California 94705, United States) ^OColorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States

Supporting Information

ABSTRACT: Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013–2015 national drinking water PFAS concentrations from the U.S. Environmental Protection Agency's (US EPA) third Unregu-lated Contaminant Monitoring Rule (UCMR3) program. The

Research

Toxic Reduction Retreats

Policy & Purchasing Change

Regrettable Substitution

Decabromodiphenyl ether

Concerns:

- Persistence
- Bioaccumulation
- Toxicity

Decabromodiphenyl ethane

Concerns:

- Persistence
- Bioaccumulation
- Toxicity

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

Six Classes of Chemicals of Concern

Four-minute videos at www.SixClasses.org

Is it necessary?

Is it worth it?

Is there a safer alternative?

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

Periodic table of elements

hydrogen 1					003	32	1100		10			213.	11000	0.66		Halos	gens	helium 2
Н															•		50.10	He
1.0079 lithium	hervilium												boron	carbon	nitrogen	oyvden	fluorine	4.0026
3	4												5	6	7	8	9	10
Li	Be												В	С	Ν	0	F	Ne
6.941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Ρ	S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	mandanese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	53	xenon 54
Dh	Sr		V	7r	Nh	Mo	To	Du	Dh	Dd	۸a	Cd	In	Sn	Sh	To	ï	Yo
	3		99 00e	~	02.000		1091	101.07	102.01	106.42	Ag	119.44	114.02	311	3D 101.76	127.60	126.00	121.20
caesium	barium		lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	*	Lu	Ht	la	W	Re	Os	Ir	Pt	Au	Hg		Pb	BI	Po	At	Rn
132.91 francium	137.33 radium		174.97 Jawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seabordium	186.21 bobrium	190.23 bassium	192.22 meitnerium	195.08 upuppilium	196.97 Unupupium	200.59 upupbium	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
9 <u>14 14 1</u>														9 <u>22</u> 6691				
			lonth anum	oorium	praseodymium	noodymium	promothium	somorium	ouropium	aodolinium	torbium	duenroeium	bolmium	orbium	thulium	attorbium	r	
*Lanthanide series		57	58	59	60	61	62	63	64	65	66	67	68	69	70			
Lanthaniae series			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			138.91 actinium	140.12 thorium	140.91 protactinium	144.24 uranium	[145] neptunium	150.36 plutonium	151.96 americium	157.25 curium	158.93 berkelium	162.50 californium	164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
* * Actinide series		89	90	91	92	93	94	95	96	97	98	99	100	101	102			
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

[259]

[258]

[257]

231.04

Th 232.04

[227]

238.03

12371

[244]

[243]

[247]

[247]

[251]

[252]

The dramatic story of the first American ascent of one of the world's highest peaks

ARLENE BLUM

20TH ANNIVERSARY EDITION

With a new Preface and Afterword by the author

Published 2007

STAIN-RESISTANT, NONSTICK, WATERPROOF, AND LETHAL

THE HIDDEN DANGERS OF C8 CALLIE LYONS

2017 Watershed Tracy K. Smith US Poet Laureatte

200 cows more than 600 hilly acres

property would have been even larger

had J not sold 66 acres to DuPont for

waste from its Washington Works factory where J was employed did not want to

sell

but needed money poor health mysterious ailments

PFASs

(per- and polyfluoroalkyl substances)

- All are highly persistent¹
 - or degrade to persistent end-products
- Long-chains are bioaccumulative²
 - in wildlife, in human serum
- **PFOA and PFOS (C8s) are toxic**^{2,3}
 - Cancer (kidney and testicular)
 - liver disease
 - immune system effects
 - thyroid disease
 - developmental effects

PFOA

PFOS

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

PFAS exposure is a health concern

Exposure linked to health risks:

Cancer, elevated cholesterol, obesity, immune suppression, endocrine disruption

(Ref: Lewis et al., 2015; Grandjean et al., 2012; Braun et al., 2016; Barry et al., 2013)

Courtesy, Cindy Hu, Harvard University 5

May 2015 The Madrid Statement on Highly Fluorinated Chemicals

"We call on the international community to cooperate in limiting the production and use of PFASs and in developing safer non-fluorinated alternatives."

> Signed by 230 scientists from 40 countries 2015: Environmental Health Perspectives

Common Uses

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

Regrettable Substitute?

Concerns:

- Extreme persistence
- Bioaccumulation
- Toxicity

Concerns:

- Extreme persistence¹
- Bioaccumulation in plants⁴⁻⁵
- Suspected toxicity¹
- More mobile⁶
- Remediation more difficult⁷⁻⁹

An "environmentally friendly" alternative?

PFAS are Problematic & Difficult to Remediate

Prevention is Preferable!

CA proposal to list carpets with any PFAS February 15, 2018

The CA Department of Toxic Substances Control (DTSC) is proposing to list carpets & rugs containing any PFAS as priority products for regulation.

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

BRANDS ARE ELIMINATING HIGHLY FLUORINATED CHEMICALS

IKEA	HaM	Crate&Barrel	LEVI STRAUSS & CO.
PUMA	Sebenetton	ESPIRIT	adidas
MARKS & SPENCER	MANGO	BURBERRY®	ZARA

Fluorine in U.S. fast food packaging paper

(percent positive; 400 products sampled)

******	Dessert & bread wrappers	56%	
	Sandwich & burger wrappers	38%	
	Paperboard 20%		
	0% Paper cups		

Adopted from Schaider L. 2017 Fluorinated compounds in U.S. fast food packaging.

New York State purchasing ban on PFAS

Arel 28, 2027 Albany, MY Governor Cuomo Announces State Agencies Save \$19.6 Million with Green Practices

single use food containers & packaging

"...products purchased ...on State contracts shall not contain perfluorinated chemicals (PFCs)..."

Washington State's Healthy Food Packaging Act Passes House & Senate February 28, 2018

HB 2658/SB 6396 passes House on a 30-17 vote

Bans paper food packaging containing any PFAS

https://toxicfreefuture.org/key-issues/legislative-priorities-2018/

EPA Lifetime Health Advisory Level of 70 ng/L PFOA + PFOS

Hu et al., Environ. Sci. Technol. Lett. 2016

GREEN SCIENCE POLICY INSTITUTE www.GreenSciencePolicy.org

AFFF Phase-out in Norway

- 2011: Domestic airports in Norway phase out AFFF and adopt fluorine-free foam
- 2015: Norwegian Defense Force begins adoption of fluorine-free foams

Source: Norwegian Environment Agency

South Australia: AFFF Ban

Jan. 30, 2018 Applies to all fluorinated firefighting foams for all applications

Australia: about 90% of airports are now using fluorine free foams. (They can reach the highest level of performance in ICAO (International Civil Aviation Organization) extinguishment tests.)

Washington State's Ban on PFAS in Firefighting Foam Passes both Houses

(HB 2793/SB 6413)

- Passed the Senate on a vote of 38-9 and the House 72-26 on February 27, 2018
- Bans sale of firefighting foam containing any PFAS beginning July 1,2020
- Bans the use of PFAS-containing foam for training beginning July 1, 2018.
- Requires notification regarding firefighting gear that contains any PFAS

More info https://toxicfreefuture.org/key-issues/legislative-priorities-2018/

US: Is C6 the "environmentally friendly" alternative to C8?

Concerns:

- Extreme persistence
- Bioaccumulation
- Toxicity

Concerns:

- Extreme persistence¹
- Bioaccumulation in plants⁴⁻⁵
- Suspected toxicity¹
- More mobile⁶
- Remediation more difficult⁷⁻⁹

Research Efficacy & Toxicology of Fluorine-Free Foams

Manufacturer	Foam
Angus / National Foam	Jetfoam (Aviation), Respondol (Class B)
Auxquimia	UNIPOL
Vsfocum	Silvara
Bioex	Ecopol
Fomtec	Enviro 3x3 Plus
Solberg	Re-healing Foam RF6 / RF3
Dr. Sthamer	Moussol F-F3/6
Biosafety Technology	Trident
3F	FREEFOR SF, HYFEX SF, FREEDOL SF

Recommendation 2

Change the MILSpec to maintain fire safety and permit the use of fluorine-free foams.

- The MILSPEC, a U.S. military specification, requires PFAS in firefighting foam for liquid fuel fires.
- The FAA requires civilian airports to use foam that meets the MILSPEC, resulting in use of PFAS foams where they may not be needed.

THE U.S. MILITARY IS SPENDING MILLIONS TO REPLACE TOXIC FIREFIGHTING FOAM WITH **OX** FIREFIGHTING FOAM

Sharon Lerner, The Intercept, February 10, 2018

- 2000-- 3M decides to stop making PFOS
- 2000, 2001—EPA warns of serious risk of harm
- 2001—Fire Fighting Foam Coalition founded
- 2003—EPA exempted AFFF from its regulatory process
- 2004– Fluorine free foams at 9 seconds above the Navy's 30-second requirement.
- 2010—A Solberg's fluorine-free foam at 5 seconds above the requirement

Photo credit: *The Telegraph*

In 2012, after extensive testing, Heathrow in the UK switched away from the use of all PFAS. In 2015, a British Airways airbus caught fire and firefighters safely put out the flames with fluorine-free foam.

"zero cleanup costs and zero environmental concerns" Graeme Day, fire service compliance manager, Heathrow

http://www.bio-ex.com/responsible-commitment/responsible-environmental-commitment

Recommendation 3

Coordinated health studies of PFAS-contaminated communities

Environmental Health

COMMENTARY

Open Access

- ² Proposal for coordinated health research in
- ³ PFAS-contaminated communities in the
- United States
- 1 5 Thomas A. Bruton^{1*} and Arlene Blum^{1,2}
- Study multiple PFASs (not just PFOA and PFOS).
- Continued & increased funding is needed.

Recommendation 4

Develop enforceable health levels for PFOA, PFOS, GenX and other short chains.

An enforceable Maximum Contaminant Level (MCL) would:

- Require utilities to perform monitoring
- Require utilities to treat water if necessary
- Expedite cleanups by responsible parties

Prevention is Preferable!

- 1. Research fluorine-free foam
- 2. Change the MILSpec to maintain fire safety and allow the use of fluorine-free foams
- 3. Coordinated health studies of PFAS-contaminated communities
- 4. Develop enforceable Maximum Contaminant Levels

For monthly e-newsletters or a copy of this talk, give Arlene your card

www.GreenSciencePolicy.org

References

- 1. Wang, Z., et al. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? *Environ. Sci. Technol.* **2017**, *51* (5), 2508-2518.
- 2. CDC / ATSDR. Draft Toxicological Profile for Perfluoroalkyls. 2015. <u>https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf</u>
- 3. Biomonitoring California. Perfluorochemicals Factsheet. 2012. https://biomonitoring.ca.gov/sites/default/files/downloads/PFCsFactSheet.pdf
- 4. Blaine, A.C., et al. Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. *Environ. Sci. Technol.* **2014**, 48 (24), 14361-14368.
- 5. Blaine, A.C., et al. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. *Environ. Sci. Technol.* **2013**, 47 (24), 14062-14069.
- 6. Guelfo, J.L. and Higgins, C.P. Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites. *Environ. Sci. Technol.* **2013**, 47(9), 4164-4171.
- 7. Appleman, T.D., et al. Treatment of poly-a nd perfluoroalkyl substances in US full-scale water treatment systems. *Water Res.* **2014**, *51*, *246-255*.
- 8. Eschauzier, C., et al. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. *Environ. Sci. Technol.* **2012**, *46*(3), 1708-1715.
- 9. Xiao, X., et al. Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. *Environ. Sci. Technol.* **2017**, 51(11), 6342-6351.
- 10. Hu, X., et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. *Environ. Sci. Technol. Lett.* **2016**, *3* (10), 344-350.. **2017**.

- 11. Mlive.com. Rockford well may have highest PFAS level in U.S. drinking water. Jan. 31, 2018. http://www.mlive.com/news/grand-rapids/index.ssf/2018/01/58930-ppt_pfas_drinking_water.html
- 12. WZZM13.com. Wolverine Worldwide says no to filter for lesser-known PFAS compound. Jan. 29, 2018. http://www.wzzm13.com/news/local/water-worries/wolverine-worldwide-says-no-to-filter-for-less-known-pfascompound/512182044
- 13. Lerner, S. "New Teflon Toxin Causes Cancer in Lab Animals." *The Intercept*, 2015.