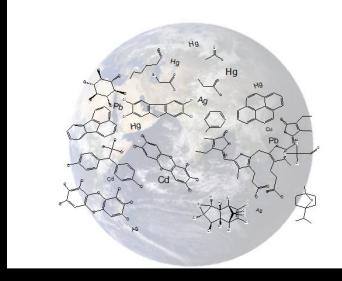


Tackling Toxics: The Chemical Class Approach Towards Healthier Products and Materials

Arlene Blum, Ph.D.
Chemistry, UC Berkeley
Green Science Policy Institute

April 2, 2018



Research

Retreats

Policy & Purchasing Change

A Planetary Boundary for Chemical Pollution


Chemical pollution is global:

- Rapidly increasing global production
- Persistence and long range transport
- Finite capacity of the earth to absorb toxics

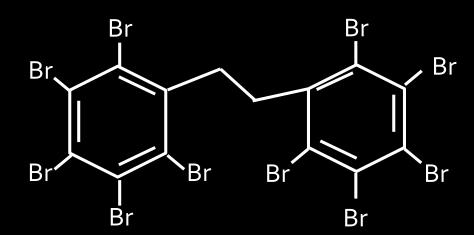
Demands a globally coordinated response

Diamond et al, 2015, Environment International

For a Green and Circular Economy, Whole Life Cycle should be Considered

U.S. Toxic Substances Control Act (1976)

- 62,000 previous chemicals "grandfathered"
- 23,000 new chemicals
 - 85% have no health data
 - 67% have no data at all



Regrettable Substitution

Decabromodiphenyl ether

Concerns:

- Persistence
- Bioaccumulation
- Toxicity

Decabromodiphenyl ethane

Concerns:

- Persistence
- Bioaccumulation
- Toxicity

Six Classes Videos

An innovative approach to reducing toxics

VIEW and SHARE: www.SixClasses.org
Healthier products, healthier people in four minutes!

Is it necessary?

Is it worth it?

Is there a safer alternative?

Green Chemistry

Green chemistry is the design of chemical products and processes that reduce or eliminate the use and/or generation of hazardous substances.

Purchasers are Key

- Manufacturers of consumer products
- Large retailers
- Educational, institutional & governmental
- Designers and specifiers
- Consumers

Material Buyer's Club

- Require transparency from manufacturers
- Utilize collective purchasing power to create a demand for healthier products and materials

Classes I to 3

Periodic table of elements

hydrogen 1	-55		299		000	37	Her		=33	110		F15	lliboo	1966	440	Halo	gens	helium 2
H															•	1415	500	He
1.0079																		4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
20,000	100000000000000000000000000000000000000													47,475		- 250		2330
Na	Mg												AI	Si	Р	S	CI	Ar
22.990	24.305	Ţ.				4		-					26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20	J	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
		J'		:			10.000	4400	1 322	34 SSS 2004						400000000000000000000000000000000000000	H no-220077	100000000000000000000000000000000000000
K	Ca	J.	Sc		V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	J.	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38	J	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	53	xenon 54
300000		J'	V	100000000000000000000000000000000000000	D	100	_	- C3300						1175.53		-		- 1000000
Rb	Sr	J.	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
112	100				man .	6.00000000	52 1555		1 pg/6 : 1	- 100 EAS			- T	2000 11125	4 4 1 1 1 1 1 1 1		- L	1102
Cs	Ba	*	Lu	Hf	la	W	Re	Os	l r	Pt	Au	Hg		Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium r 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
	100.000		200-0			100000000000000000000000000000000000000		25.00			E 2000							
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

W	· Committee				
*	an	tha	nide	serie	í
	Lun	tiru	IIIuc	30110	٠

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Class 1: Highly Fluorinated Chemicals

Carbon-Fluorine bond strength:

- Leads to oil and water repellency
- "Forever chemicals" -- last for geologic time!

Is C6 an improvement over PFOA and PFOS?

C6 is called the "environmentally friendly" alternative

Concerns:

- Extreme persistence
- Bioaccumulation
- Toxicity

Concerns:

- Extreme persistence
- Bioaccumulation in plants
- Suspected toxicity
- More mobile
- Remediation more difficult

PFAS exposure is a health concern

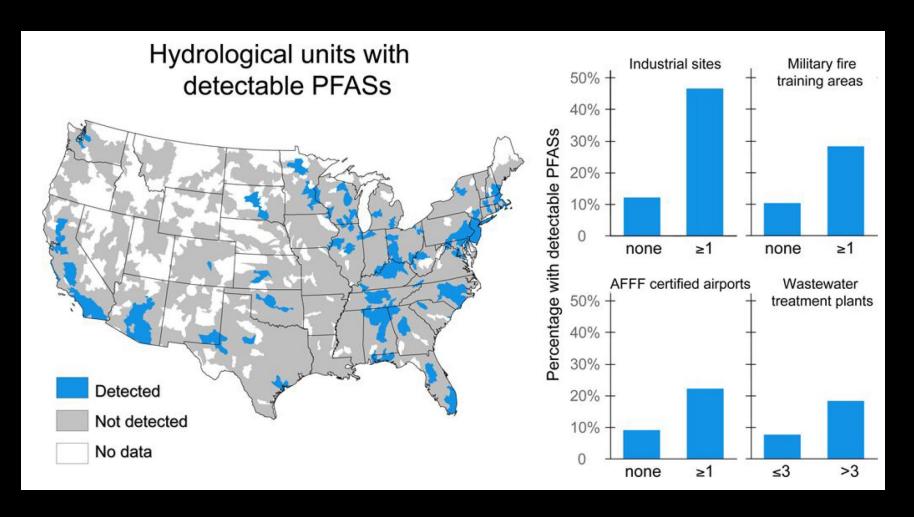
Exposure linked to health risks:

Cancer, elevated cholesterol, obesity, immune suppression, endocrine disruption

(Ref: Lewis et al., 2015; Grandjean et al., 2012; Braun et al., 2016; Barry et al., 2013)

Common Uses

May 2015 The Madrid Statement on Highly Fluorinated Chemicals



"We call on the international community to cooperate in limiting the production and use of PFASs and in developing safer non-fluorinated alternatives."

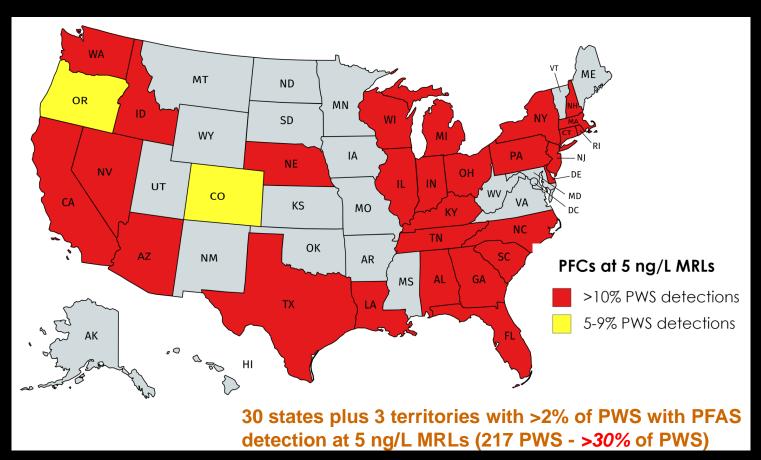
Signed by 230 scientists from 40 countries

2015: Environmental Health Perspectives

EPA Lifetime Health Advisory Level of 70 ng/L PFOA + PFOS

Highly Fluorinated Hush Puppies

- Wolverine used Scotchguard (PFOS) used for leather treatment 1950s – 2000
 - Leather scrap dumped
 - Sludge applied to fields



PFOA + PFOS level up to 58,000 ppt

(842 times EPA health advisory level)

Widespread PFAS occurrence

- Percent of water systems with detectable PFOA:
 - Official EPA estimate: 1%
 - Estimate from testing lab: up to 24%

U. S. PFAS Legal Claims

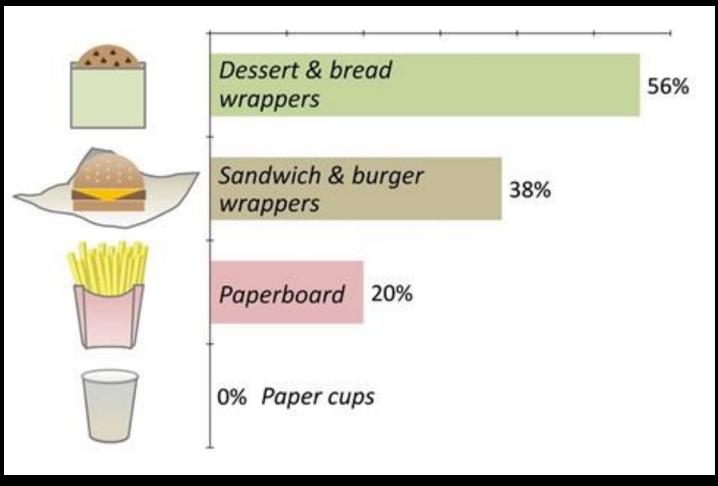
September 2015: 3,500 personal injury and 37 wrongful death claims in Ohio Valley against DuPont went to trial (The Teflon Toxin Goes to Court, Sharon Lerner, The Intercept) February 2017: \$671 million to settle claims

Minnesota seeks \$5 billion for PFAS water pollution February 2018: 3M, Minnesota settle for \$850 million

PFAS are Problematic & Difficult to Remediate

Prevention is Preferable!

CA proposal to list carpets with any PFAS


February 15, 2018

The CA Department of Toxic Substances Control is proposing to list carpets & rugs containing any PFAS as priority products for regulation.


Fluorine in U.S. fast food packaging paper

(percent positive; 400 products sampled)

Adopted from Schaider L. 2017 Fluorinated compounds in U.S. fast food packaging.

Impact

United States Senate WASHINGTON, DC 20510

March 9, 2017

Mr. Daniel S. Schwartz Chief Executive Officer Restaurant Brands International Inc. 226 Wyecroft Road, Oakville, Ontario L6K 3X7, Canada

Dear Mr. Schwartz:

We write to inquire about Burger King's use of potentially harmful fluorinated chemicals in food wrappers, bags, boxes, or other kinds of food packaging. Per and polyfluoroalkyl substances (PFASs) represent a class of chemicals sometimes used in fast food packaging to prevent grease and sauces from seeping through packaging. These chemical compounds have been

New York State purchasing ban on PFAS

single use food containers & packaging

"...products purchased ...on State contracts shall not contain perfluorinated chemicals (PFCs)..."

Washington State's Healthy Food Packaging Act signed March 21, 2018

HB 2658/SB 6396 passes House on a 30-17 vote

Bans paper food packaging containing any PFAS

BRANDS ARE ELIMINATING HIGHLY FLUORINATED CHEMICALS

IKEA	HaM	Crate&Barrel	LEVI STRAUSS & CO.
PUMA	& benellon	ESIPIRIT	adidas
MARKS& SPENCER	MANGO	BURBERRY	ZARA

Sharon Lerner, The Intercept, February 10, 2018

Recommendation

Change the MILSpec to maintain fire safety and permit the use of fluorine-free foams.

- The MILSPEC, a U.S. military specification, followed in Canada requires PFAS in firefighting foam for liquid fuel fires.
- The U.S. FAA requires civilian airports to use foam that meets the MILSPEC, resulting in use of PFAS foams where they may not be needed.
- Safer alternatives are in use worldwide. The MILSPEC should be changed to allow their use in the US and Canada.

AFFF Phase-out in Norway

 2011: Domestic airports in Norway phase out AFFF and adopt fluorine-free foam

 2015: Norwegian Defense Force begins adoption of fluorine-free foams

Source: Norwegian Environment Agency

South Australia: AFFF Ban

Jan. 30, 2018
Applies to all fluorinated firefighting foams for all applications

Australia: about 90% of airports are now using fluorine free foams. (They can reach the highest level of performance in ICAO (International Civil Aviation Organization) extinguishment tests.)

Washington State's Ban on PFAS in Firefighting Foam Signed March 27, 2018

(HB 2793/SB 6413)

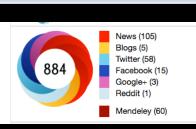
- Passed the Senate on a vote of 38-9 and the House 72-26 on February 27, 2018
- Bans sale of firefighting foam containing any PFAS beginning July 1,2020
- Bans the use of PFAS-containing foam for training beginning July 1, 2018.
- Requires notification regarding firefighting gear that contains any PFAS

More info https://toxicfreefuture.org/key-issues/legislative-priorities-2018/

In 2012, after extensive testing, Heathrow in the UK switched away from the use of all PFAS. In 2015, a British Airways airbus caught fire and firefighters safely put out the flames with fluorine-free foam.

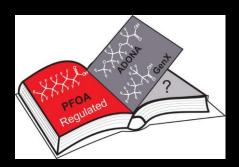
"zero cleanup costs and zero environmental concerns"

Graeme Day, fire service compliance manager, Heathrow



http://www.bio-ex.com/responsible-commitment/responsible-environmental-commitment

Communications strategy for papers


can increase media coverage, downloads, and impact

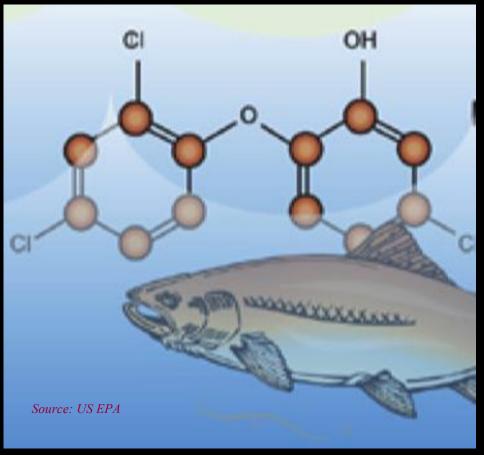
Study	Journal	Year	Downloads*	Altmetric Score*	
Scientists' letter on PFAS in drinking water	Env. Health	2017	2,356	447	
Florence Statement on antimicrobials	ЕНР	2017		393	
Highly fluorinated chemicals in fast food	ES&T Letters	2017	10,524	890	#3 for ES&T Let
Highly fluorinated chemicals in U.S. drinking water	ES&T Letters	2016	26,622	1,294	#2 for ES&T Let
Flame retardants in baby products	ES&T	2011	20,672	62	

Green Science Policy Communications Strategy

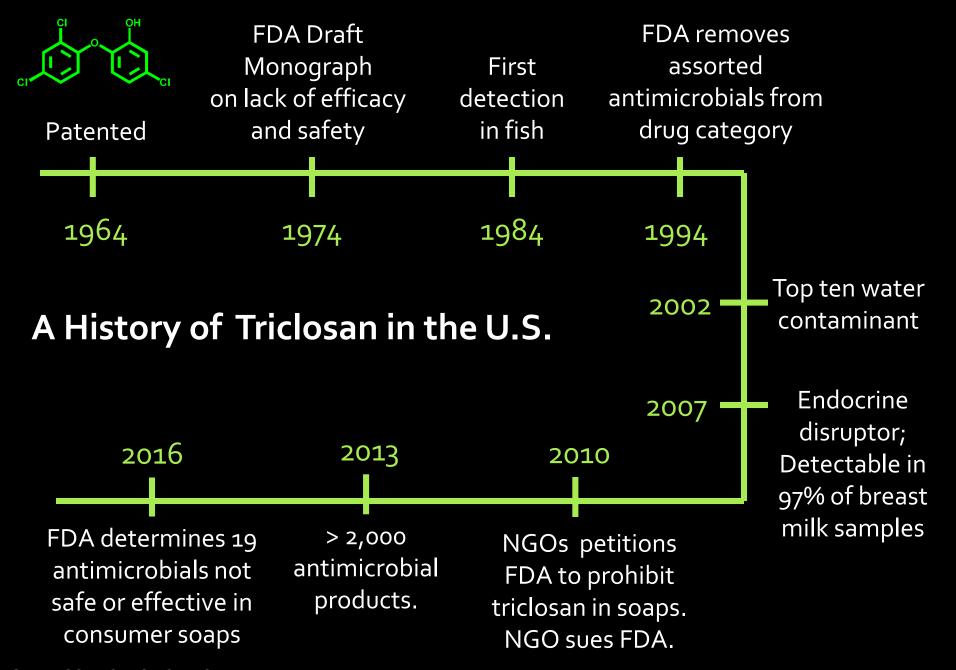
- Select research topic to support policy in public interest.
- Collaborate with authors from multiple institutions.
- After the paper is accepted, select a date for maximum impact for the paper to go on line (2-4 weeks in the future).
- Compose press release in accessible language with a "hook".
- Query journalists & share release & paper with those who respond.
- Educate journalists on the science & establish relationships.
- Hope it is not a big news day!

Class 2: Antimicrobials

Triclosan



Triclocarban



5 – 10 Seconds (ineffective)

Lifetime exposure in aquatic organisms (toxic)

The Florence Statement on Triclosan and Triclocarban

Documents the scientific consensus about:

- potential for harm
- recommendations to prevent further harm

Signed by 205 international scientists

Alternative Antimicrobials

	Toxic to Aquatic Organisms	Can Persist in the Environment	Can Contribute to Antimicrobial Resistance	Health Risks?
Triclosan & Triclocarban	√	√	√	Hormone disruption Allergy sensitivity Altered microbiome
Quats	\checkmark	√		Asthma Skin irritation Reproductive toxicant?
Nanosilver	\checkmark		\checkmark	Significant data gaps

Class 3 Flame retardants

Updating 1970s Flammability Standards

• Children's sleepwear -- 1976

• Furniture and baby product foam -- 2014

Foam building insulation -- 2019?

Brominated Tris Flame Retardant

Tris (2,3-dibromopropyl) phosphate

- In children's sleepwear 1975 to 1977
- Up to 10% of the weight of fabric
- In children's urine
- Mutagen and possible carcinogen

Flame-Retardant Additives as Possible Cancer Hazards

The main flame retardant in children's pajamas is a mutagen and should not be used.

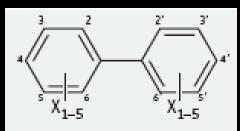
Arlene Blum and Bruce N. Ames

U.S. Consumer Product Safety Commission

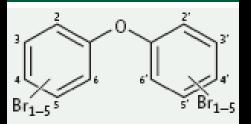
TRIS-Treated Children's Garments Banned

April, 1977

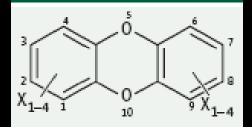
Chlorinated Tris replaced Brominated Tris

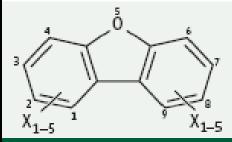

- Removed from pajamas in 1978
- Used in furniture until 2012

Technical Bulletin 117



 Required furniture foam to withstand a small open flame for 12 seconds


 No significant fire safety benefit (fires start in exterior fabric not filling)


PCBs (X = Cl) and PBBs (X = Br)

PBDEs

Diaxins (X = Cl or Br)

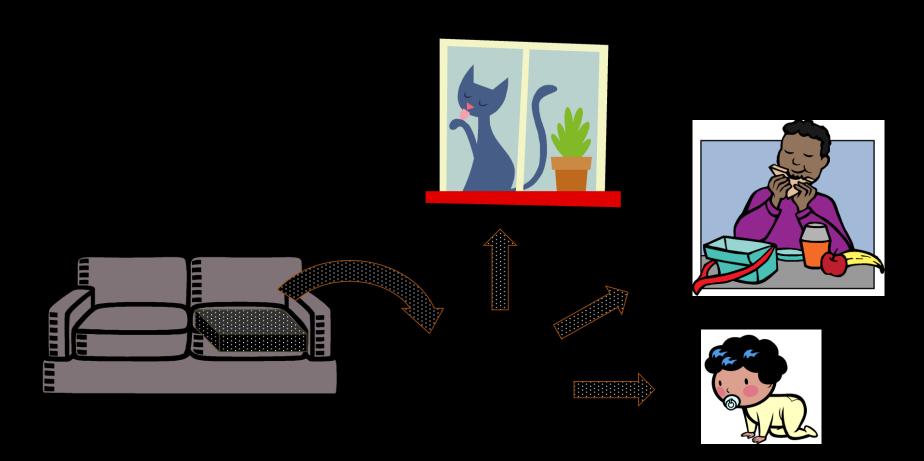
Furans (X = Cl or Br)

PentaBDE Flame Retardant

Used from 1975 to 2004 to meet TB117.

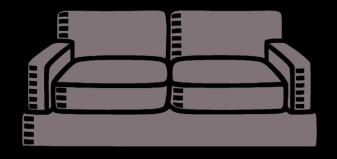
98% of use in furniture and vehicle foam in US and Canada in 2003

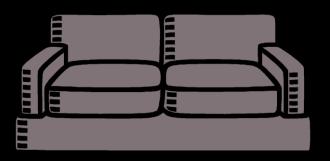
Furniture foam flame retardant (PentaBDE) associations with human health problems


Increased time to pregnancy Altered thyroid hormone Thyroid disease in women

Main et al. 2007; Goodyer et al 2017; Eskenazi et al., 2010, 2011, 2012; Herbstman et al. 2010; Makey et al. 2016; Windham et al. 2015; Harley et al. 2017; Allen et al. 2016

Impaired attention
Poorer coordination
Lower IQ
Developmental toxicity
Baby boys' genital problems
Lower birth weight
Delayed puberty in girls
Earlier puberty in boys


From Products to People


TB117 Fire Safety Benefit?

TB117 foam

Non - TB117 foam

"No significant, consistent difference..."

Flame retardants increase smoke toxicity more than they reduce fire growth

Flame retardants delay, but don't prevent ignition Then, flame retardants can increase....

- Soot and Smoke
- Carbon Monoxide and Hydrogen Cyanide
- Dioxins and Furans

Increased fire safety without flame retardants

Assembly Bill 706, Senate Bill 772, Senate Bill 1291, Senate Bill147

Paid for by Californians for Fire Safety:

- Albemarle
- Chemtura
- Israel Chemicals LTD (ICL)

San Antonio Statement on Brominated and Chlorinated Flame Retardants

- Signed by over 200 scientist's from 30 countries
- Documents health and environmental harm and lack of proven fire safety benefit

Elimination of Fire Retardant Chemicals in Office Furniture

"Given the increasing body of evidence that indicates the persistence, bio-accumulation and potential health aspects of many fire retardants, we believe the risks associated with the use of these chemicals is greater than the hazard associated with the fire risk from furniture without fire retardants."

- From the position paper

Business and Institutional Furniture Manufacturer's Association. (BIFMA)

Pulitzer Prize Finalist

Goldsmith Prize
Investigative Reporting

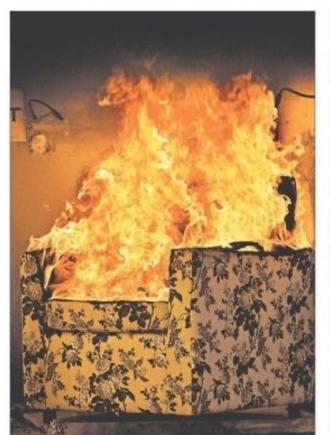
Environmental Journalists Society Environmental Reporting

Gerald Loeb Award
Business and Financial Journalism

National Press Club

Consumer Award

Chicago Tribune


SUNDAY, MAY 6, 2012

BREAKING NEWS AT CHICAGOTRONINE.CO.

TRIBUNE WATCHDOG

Playing with fire

A deceptive campaign by industry brought toxic flame retardants into our homes and into our bodies. And the chemicals don't even work as promised.

By Patricia Callaban and Sam Roe

Third Heimbach knows how to tell a story.

Before California lawmakers list year, the noted burn surgeon drew gasps from the crossed as he described a 2-week-old boby gid who was burned in a fire started by a condite while she lay on a pillow that lacked flame returdant chemicals.

"Now this is a tiny little person, no bigger than my Italian gaybound at home," said Heimboch, gesturing to approximate the buby's size. "Half of her body was severely burned. She ultimately died after about three weeks of pain and misery in the hospital."

Heinsbach's passionate testimory about the baby's death made the long-term health concerns about flame retardants voiced by doctors, environmentalists and even firefighters sound abstract and norm.

But there was a problem with his testimony. It wasn't true. Records show there was no dangerous pillow or candle fire. The bubs he described didn't exist.

Neither did the 9-week-old patient who Heimbach told California legislators died in a candle fire in 2000. Nor did the 6-week-old patient who he told Alaska lovenators was fatally burned in her crib in 2010.

Heimbuch is not just a promiment burn doctor. He is a star witness for the manufacturers of flame retardants.

His testimony, the Tribune found, is port of a decades-long campaign of deception that has loaded the furniture and electronics in American homes with pounds of toxic chemicals linked to camer, neurological deficits, developmental prob-

lems and impaired fertility.

The tactics started with flig.

Tobacco, which warned to shift focus away from eigenettes as the cause of fire deaths, and continued as chemical companies worked to preserve a lucrative market for their products, according to a Tribune review of thousands of government, scientific and internal industry

stoked the public's fear of fire and helped organize and steer an association of top fire officials that spent more than a decade campaigning for their cause.

Today, scientists know that some fame retardants escape from homsehold products and settle in disk. That's why toddless, who play on the floor and put things in their mosths, generally have far higher levels of these chemicals in their bodies thout their parents.

Blood levels of certain widely used flame retardants doubled in adults every two to flore years between 1970 and 2004. More recent studies show levels havent declined inthe U.S. even though some of the chemicals have been pulled from the market. A typical American baby is born with the highest recorded concentrations of flame retardants among infants

People might be willing to accept the health risks if the

California Flammability Standards TB117-2013

Mandatory January 1, 2015

Flame retardants not needed, but can still be used

Product Labels Required

TB133 being revoked in California due to lack of need and potential for harm

NOTICE

THIS ARTICLE MEETS THE FLAMMABILITY
REQUIREMENTS OF CALIFORNIA BUREAU OF
ELECTRONIC AND APPLIANCE REPAIR, HOME
FURNISHINGS AND THERMAL INSULATION
TECHNICAL BULLETIN 117-2013. CARE SHOULD BE
EXERCISED NEAR OPEN FLAME OR WITH BURNING
CIGARETTES.

The upholstery materials in this product:
____contain added flame retardant chemicals
X contain NO added flame retardant chemicals

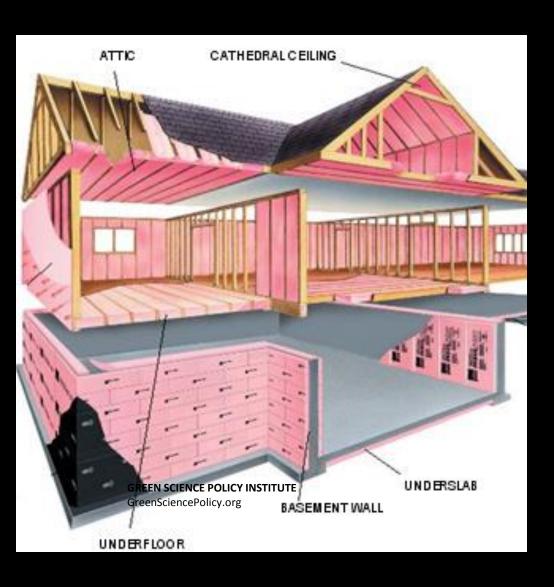
The State of California has updated the flammability standard and determined the fire safety requirements for this product can be met without adding flame retardant chemicals. The State has identified many flame retardant chemicals as being known to, or strongly suspected of, adversely impacting human health or development.

Proposed Canadian open flame standard CAN/ULC-S₁₃₁-YY

Standard method of tests for fire growth flammability of upholstered furniture
Under Underwriters Laboratory

4/3/2018

NFPA 277 would <u>reintroduce</u> an open-flame standard in residential upholstered furniture


- A new furniture flammability test is not needed.
- NFPA 277 would not significantly improve fire safety, but would harm human health and ecosystems.
- NFPA process lacked transparency & was industry dominated.

GREEN SCIENCE POLICY INSTITUTEGreenSciencePolicy.org

If passed, NFPA 277 could bring toxic & unneeded flame retardants back into US, Canadian furniture!

Plastic foam insulations (polystyrene, polyurethane, polyiso, etc.)

Used increasingly for energy efficiency

Can be used:

- inside walls
- below grade
- attics, etc.

Building codes drive use of FRs in insulation

INFORMATION PAPER

Flame retardants in building insulation: a case for re-evaluating building codes

Vytenis Babrauskas¹, Donald Lucas², David Eisenberg³, Veena Singla⁴, Michel Dedeo⁴ and Arlene Blum^{4,5}

¹Fire Science & Technology Inc., 9000 – 300th Place SE, Issaquah, WA 98027, US E-mail: vytob@doctorfire.com

²Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 70-0108B, Berkeley, CA 94720, US E-mail: dJucas@lbl.gov

³Development Center for Appropriate Technology, PO Box 27513, Tucson, AZ 85726-7513, US E-mail: strawnet@gmail.com

⁴Green Science Policy Institute, PO Box 5455, Berkeley, CA 94705, US E-mails: veena@greensciencepolicy.org, michel@greensciencepolicy.org and arlene@greensciencepolicy.org

⁵Department of Chemistry, University of California, Berkeley, CA 94720, US

Assembly Bill 127 (2013):

Safer Building Insulation

- State fire marshal may propose updates that:
 - Maintain overall fire safety
 - Provide flexibility in meeting fire safety standards with or without chemical flame retardants
- Implementation:
 - Working Group (ended summer 2015)
 - Testing & analysis at Oklahoma State University

Oklahoma State University Study

Commissioned by California OSFM following AB 127 Working Group.

Key Findings

- <u>Comparable</u> ignition and heat release rates between foam plastic insulation with and without flame retardants and other combustible construction materials.
- When installed below grade, no risk of fire spread to the structure from insulation without flame retardants.

California codes can be safely updated to allow below-grade use of insulation without flame retardants.

Six Classes Videos

An innovative approach to reducing toxics

VIEW and SHARE: www.SixClasses.org
Healthier products, healthier people in four minutes!

By limiting use of the Six Classes We can have a healthier world. For more information. GreenSciencePolicy.org

